On instability of solitons in the 2d cubic Zakharov–Kuznetsov equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the impact of e-readiness on ec success in public sector in iran the impact of e-readiness on ec success in public sector in iran

acknowledge the importance of e-commerce to their countries and to survival of their businesses and in creating and encouraging an atmosphere for the wide adoption and success of e-commerce in the long term. the investment for implementing e-commerce in the public sector is one of the areas which is focused in government‘s action plan for cross-disciplinary it development and e-readiness in go...

On the Instability for the Cubic Nonlinear Schrödinger Equation

We study the flow map associated to the cubic Schrödinger equation in space dimension at least three. We consider initial data of arbitrary size in Hs, where 0 < s < sc, sc the critical index, and perturbations in Hσ , where σ < sc is independent of s. We show an instability mechanism in some Sobolev spaces of order smaller than s. The analysis relies on two features of super-critical geometric...

متن کامل

Multistable Solitons in the Cubic-Quintic Discrete Nonlinear Schrödinger Equation

We analyze the existence and stability of localized solutions in the one-dimensional discrete nonlinear Schrödinger (DNLS) equation with a combination of competing self-focusing cubic and defocusing quintic onsite nonlinearities. We produce a stability diagram for different families of soliton solutions, that suggests the (co)existence of infinitely many branches of stable localized solutions. ...

متن کامل

the washback effect of discretepoint vs. integrative tests on the retention of content in knowledge tests

در این پایان نامه تاثیر دو نوع تست جزیی نگر و کلی نگر بر به یادسپاری محتوا ارزیابی شده که نتایج نشان دهندهکارایی تستهای کلی نگر بیشتر از سایر آزمونها است

15 صفحه اول

On instability for the cubic nonlinear Schrodinger equation

We study the flow map associated to the cubic Schrödinger equation in space dimension at least three. We consider initial data of arbitrary size in Hs, where 0 < s < sc, sc the critical index, and perturbations in Hσ , where σ < sc is independent of s. We show an instability mechanism in some Sobolev spaces of order smaller than s. The analysis relies on two features of super-critical geometric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: São Paulo Journal of Mathematical Sciences

سال: 2019

ISSN: 1982-6907,2316-9028

DOI: 10.1007/s40863-019-00142-7